
REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

05-10-2015
2. REPORT TYPE

Final
3. DATES COVERED (From - To)
26 Aug 2011 – 26 Aug 2015

4. TITLE AND SUBTITLE

Intelligence in the Now: Robust Intelligence in Complex
Domains

5a. CONTRACT NUMBER
FA2386-10-1-4135

5b. GRANT NUMBER
Grant 104135

5c. PROGRAM ELEMENT NUMBER
61102F

6. AUTHOR(S)

Dr. Leslie Kaelbling

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Massachusetts Institute of Technology
32 Vassar Street, 32-G486
Cambridge 02139-4307
United States

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AOARD
UNIT 45002
APO AP 96338-5002

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/AFOSR/IOA(AOARD)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

104135

12. DISTRIBUTION/AVAILABILITY STATEMENT

 Distribution Code A: Approved for public release, distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Our overall goal is to develop the estimation, planning, and control techniques necessary to enable robots to
perform robustly and intelligently in complex uncertain domains. Robots operating in complex, unknown
environments have to deal explicitly with uncertainty. Sensing is increasingly reliable, but inescapably local: robots
cannot see, immediately, inside cupboards, under collapsed walls, or into nuclear containment vessels. Task
planning, whether in household and disaster-relief domains, requires explicit consideration of uncertainty and the
selection of actions at both the task and motion levels to support gathering information. Our approach to robust
behavior in uncertain domains is founded on the notion of integrating estimation, planning, and execution in a
feedback loop. A plan is made, based on the current belief state; the first step is executed; an observation is
obtained; the belief state is updated; the plan is recomputed, if necessary, etc. We call this online replanning. Our
work in this grant has developed an initial version of such a planner and demonstrated it for controlling the behavior
of an autonomous mobile-manipulation robot.

15. SUBJECT TERMS

Artificial Intelligence, Automated Reasoning, Robotics

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT

SAR

18. NUMBER
OF PAGES

28

19a. NAME OF RESPONSIBLE PERSON
Brian Lutz, Lt Col, USAF a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U 19b. TELEPHONE NUMBER (Include area code)
+81-42-511-2000

 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

Final Report for AOARD Grant FA2386-10-1-4135
Intelligence in the Now: Robust Intelligence in Complex Domains

September 26, 2015

Leslie Pack Kaelbling
lpk@csail.mit.edu
MIT Computer Science and Artificial Intelligence Laboratory
32 Vassar Street, Cambridge, MA 02139
Voice: 617-253-9695
Fax: 617-452-5034

Tomas Lozano-Perez
tlp@csail.mit.edu
MIT Computer Science and Artificial Intelligence Laboratory
32 Vassar Street, Cambridge, MA 02139
Voice: 617-253-7889
Fax: 617-452-5034

Period of Performance: 8/26/2011 - 8/26/2015

Abstract

Our overall goal is to develop the estimation, planning, and control techniques necessary to enable robots to
perform robustly and intelligently in complex uncertain domains. Robots operating in complex, unknown
environments have to deal explicitly with uncertainty. Sensing is increasingly reliable, but inescapably
local: robots cannot see, immediately, inside cupboards, under collapsed walls, or into nuclear containment
vessels. Task planning, whether in household and disaster-relief domains, requires explicit consideration of
uncertainty and the selection of actions at both the task and motion levels to support gathering information.

In order to explicitly consider the effects of uncertainty and to generate actions that gain information, it
is necessary to plan in belief space: that is, the space of the robot’s beliefs about the state of its environment,
which we will represent as probability distributions over states of the environment. For planning purposes,
the initial state is a belief state and the goal is a set of belief states: for example, a goal might be for the
robot to believe with probability greater than 0.99 that all of the groceries are put away in an acceptable
location, or that there are no survivors remaining in the rubble.

Planning in belief space beautifully integrates perception and action, both of which affect beliefs in ways
that can be modeled and thus exploited to achieve an ultimate goal. However, planning in belief space
for realistic problems poses some substantial challenges: (a) belief space is generally a high-dimensional
continuous space (of distributions) and (b) the outcomes of actions and (especially) perception makes the
process dynamics highly non-deterministic. These are fundamental reasons why optimal planning under
uncertainty is intractable in the worst case. But, approximate representation and planning algorithms are
possible for many domains and belief space serves as an organizing principle in these approaches.

Our approach to robust behavior in uncertain domains is founded on the notion of integrating estimation,
planning, and execution in a feedback loop. A plan is made, based on the current belief state; the first step
is executed; an observation is obtained; the belief state is updated; the plan is recomputed, if necessary,
etc. We call this online replanning. In contrast to the more typical method of finding a complete policy
for all possible belief states in advance, this strategy allows planning to be efficient but approximate: it is
important that the first step of the plan be useful, but the rest will be re-examined in light of the results of
the first step.

A critical component of such a system is a planner that works effectively in very high-dimensional geo-
metric problems that have substantial uncertainty: a robot trying to assemble ingredients for cooking a meal
has to work in a space that is made up of the positions, orientations, and other aspects of a large number

1

of objects; it will have localized uncertainty about some of the objects and may have very little information
about others. Planning for the robot is not just motion planning: it must decide what order to move objects
in, how to grasp them, where to place them, and so on. It must also plan to gain information, including
deciding where to look, determining that it must move objects out of the way to get an unoccluded view, or
selecting a cupboard to search for a particular object it needs.

Our work in this grant has developed an initial version of such a planner and demonstrated it for con-
trolling the behavior of an autonomous mobile-manipulation robot.

Introduction

Our work on this project attempts to integrate the key ideas in three broad areas of research within the
Artificial Intelligence and Robotics community.

• Symbolic planning in the STRIPS tradition provides methods for dealing with a wide class of knowledge
and goals. The methods in this area, derived from logic, provide powerful techniques for dealing with
large problems, notably factoring and abstraction.

• Motion planning provides powerful methods for dealing with the geometric and kinematic constraints
that are fundamental to robot motion.

• Decision-theoretic planning under uncertainty, in particular, formulations of problems as Partially
Observable Markov Decision Problems (POMDP) (Figure 1), provides powerful methods for dealing
with uncertainty and for integrating perception and action.

Figure 1: POMDP Model

These sub-fields have developed largely independently yet we believe that they each provide crucial
components of the solution we seek.

When acting in an uncertain environment (Figure 2), a system should keep a characterization of its
knowledge of the state of the world, the belief, as a probability distribution over the states; this is the job
of the state estimator (SE). The policy (π) encodes the action to be taken for any belief. The central notion
in our approach is that of planning in the belief space – the space of beliefs. The key issue is how to make
planning in belief space tractable; traditional solvers for POMDPs, which construct complete belief-space
policies through off-line computation are only useful for smallish problems.

2

Figure 2: POMDP Controller

Experiment

The key objective of this research is to develop principled and practical approaches for robot decision-making
under uncertainty. Our principal experimental domain is that of a mobile-manipulation robot. We know how
to plan complex manipulations when we have exact models of the world, however even moderate amounts of
uncertainty can cause the best laid plans to go astray. However, dealing with uncertainty is fundamental to
manipulation since our knowledge of the world, whether through prior knowledge or sensors, is always limited.
Our approach integrates planning, perceiving and acting to develop robot systems capable of autonomous
mobile manipulation.

Results and Discussion

Our work encompasses several threads:

1. Hierarchical planning in belief space

2. State estimation in complex spaces

3. Planning and control for manipulation

The following sections summarize our research results in these areas. The work is reported in more detail
in the accompanying papers.

1 Hierarchical planning in belief space

Unifying Perception, Estimation and Action for Mobile Manipulation via Belief Space Plan-

ning [9]

We have developed [9] an integrated strategy for planning, perception, state-estimation and action in complex
mobile manipulation domains. The strategy is based on planning in the belief space of probability distribution
over states. Our planning approach is based on hierarchical symbolic regression (pre-image back-chaining).
We have developed a vocabulary of fluents that describe sets of belief states, which are goals and subgoals in
the planning process. We have shown that a relatively small set of symbolic operators lead to task-oriented
perception in support of the manipulation goals.

Figure 4 shows a sequence of images depicting the planning and execution process for an initial goal of
placing the small blue cup at one end of the table. The robot starts with a known area around it, and the
rest of the room is unknown, as represented in an oct-tree that maps the observed regions. To determine the
contents of the swept regions of generated motions, a series of look motions. When these scans are executed
(steps 2–7 in Figure 4), new areas of the oct-tree become known as illustrated in subsequent oct-trees in
Figure 3. After the first two scans (steps 2 and 3 in Figure 4), the table has not been observed and so its pose
distribution is diffuse – as shown in the first pose distribution in Figure 3. Also, the big red object has not

3

been seen; note that it is not part of the initial model. After the table is scanned (in step 4 of Figure 4), its
pose distribution becomes tight but the blue cup is still not visible (since it is occluded by the big red object),
so its pose distribution is still diffuse, as shown in the second pose distribution of Figure 3. In the scan of
step 4, the red object is also seen and added to the model (as seen in the third pose distribution of Figure 3).
When going to look at the region (in step 5 of Figure 4), where the red object is to be moved, the robot
serendipitously “sees” the blue cup and narrows its distribution, as seen in the fourth pose distribution of of
Figure 3. If the blue cup had not been seen at this point, a plan would have been constructed to move the
red object out of the way so as to enable looking at the blue cup. Steps 6 and 7 of Figure 4 are undertaken
to ensure that the space that the robots needs to traverse while moving the red block and the blue cup are
free of obstructions. After the required regions are known, the planning and execution proceeds as usual,
resulting in a sequence of operations to move the red block to its target location, pick up the blue block and
take it to its goal location (steps 8-12 of Figure 4).

Figure 3: The distribution of the objects relative to the mean robot pose.

4

Figure 4: The key steps in the execution of a plan to place the small blue cup in a target region at one end

of the table. The red object is initially not in the object’s model of the world. Scans with the head-mounted

sensor are shown as dark blue points. Scans with the scanning laser are shown in cyan.

Optimization in the Now: Dynamic Peephole Optimization for Hierarchical Planning [7]

For robots to effectively interact with the real world, they will need to perform complex tasks over long time
horizons. This is a daunting challenge, but recent advances using hierarchical planning [9] have been able to
provide leverage on this problem. Unfortunately, this approach makes no effort to account for the execution
cost of an abstract plan and often arrives at poor quality plans.

We have developed a strategy for tackling the problem of optimization in hierarchical robotic planning [7]
that addresses plan quality by dynamically reordering and grouping subgoals in an abstract plan. We re-
frame the cost estimation problem as one in which, given two subgoals G1 and G2, we must estimate which of
the following strategies will be most efficient: planning for and executing G1 first, planning for and executing
G2 first, or planning for them jointly and interleaving their execution (see Figure 5). Given the ability to
answer that query, we will be able to perform “peephole optimization” of the plan at execution time, taking
advantage of immediate knowledge of the current state of the world to select the best next action to take.

5

Figure 5: The root of a planning tree for a simple problem that involves transporting two packages to another

location within the same city. At the high level, the Unload operators are recognized as overlapping on a

shareable resource (truck) and are combined. In refining Plan 3, the Load operator is determined to overlap

on both the shareable resource of the truck and the contained resource of the trucks location. It is reordered

to be before the first Unload because it is estimated, greedily, as being easier to achieve from the current

state. If there was not enough space in the truck, then the truck would not be considered shareable and the

ordering would remain unchanged.

We ran experiments in challenging domains (Figure 6) and observed up to 30% reduction in execution
cost when compared with a standard hierarchical planner (Figure 7).

Figure 6: The Marsupial Logistics Domain. Circles are locations and pink circles are airports. The additional

windows represent the loading and storage areas of the vehicles. The red squares represent a marsupial robot

which takes care of storing packages for transit. In order for vehicles to move, all packages, as well as the

loader, must be on one of the beige squares. Package 2 is about to be unloaded at airport-1 so it can be

flown to a destination.

6

Figure 7: Average percent decrease in plan cost vs. problem size for RCHPN (with goal re-ordering) vs HPN

(with no goal re-ordering).

Foresight and Reconsideration in Hierarchical Planning and Execution [14]

We have developed a hierarchical planning and execution architecture that maintains the computational
efficiency of hierarchical decomposition while improving optimality. It provides mechanisms for monitoring
the belief state during execution and performing selective replanning to repair poor choices and take advan-
tage of new opportunities. It also provides mechanisms for looking ahead into future plans to avoid making
short-sighted choices. The effectiveness of this architecture was shown through comparative experiments in
simulation and demonstrated on a real PR2 robot navigating among (unknown) movable obstacles.

Non-Gaussian Belief Space Planning [17]

In partially observable control domains it is potentially necessary to perform complex information-gathering
operations in order to identify the state. Our approach to solving these problems, as illustrated above, is to
create plans in belief-space, the space of probability distributions over the underlying state of the system.
The belief-space plan encodes a strategy for performing a task while gaining information as necessary. Unlike
most approaches in the literature which rely upon representing belief state as a Gaussian distribution, we have
developed [17] an approach to non-Gaussian belief space planning based on solving a non-linear optimization
problem defined in terms of a (small) set of state samples.

We have shown that even though our approach makes optimistic assumptions about the content of future
observations for planning purposes, all low-cost plans are guaranteed to gain information in a specific way
under certain conditions. We have shown that eventually, the algorithm is guaranteed to localize the true
state of the system and to reach a goal region with high probability. Although the computational complexity
of the algorithm is dominated by the number of samples used to define the optimization problem, our
convergence guarantee holds with as few as two samples. Moreover, we have shown empirically that it is
unnecessary to use large numbers of samples in order to obtain good performance.

Figure 8(a) shows a simple application of the algorithm. A two-link robot arm moves a hand in the plane.
A single range-finding laser is mounted at the center of the hand. The laser measures the range from the end-
effector to whatever object it “sees”. The hand and laser are constrained to remain horizontal. The position
of the hand is assumed to be measured perfectly. There are two boxes of known size but unknown position
to the left of the robot (four dimensions of unobserved state). The boxes are constrained to be aligned with
the coordinate frame (they cannot rotate). The control input to the system is the planar velocity of the
end-effector. The objective is for the robot to localize the two boxes using its laser and move the end-effector
to a point directly in front of the right-most box (the box with the largest x-coordinate) so that it can grasp
by extending and closing the gripper. Figure 8(b) shows a path found by the algorithm. The key point is
that this path was found completely automatically; it is not an instance of a pre-programmed strategy.

7

laser
arm

(a)

−2 0 2 4 6

−2

−1

0

1

2

3

4

5

(b)

Fig. 1. (a) the experimental scenario. (b) a path found by Algorithm 1
with a nine-sample planner. It starts in the upper right and ends at a point
directly in front of the right-most box. The red circles denote where re-
planning occurred.

0 100 200 300 400 500 600 700
4

5

6

7

8

9

10

11

12

Time step

E
n
tr

o
p
y

Fig. 2. Belief state entropy as a function of time step. The solid black line
corresponds to the trajectory shown in (b). The dashed blue lines correspond
to five additional nine-sample runs.

terminates with probability one in a belief state, b, where
Θ(b,r,xg) ≥ ω .

Proof: Notice that if J̄(x1, . . . ,xk,u1:T−1) < ε , then
there exists some strictly positive radius, r > 0, such that
the expression in Equation 12 strictly greater than a lower
bound, ϖ > 1. Let κT denote the location of the true state
at time T . Using the result of Theorem 1, we know that
Θ(b,r,κT) grows arbitrarily close to one, and we know that
Algorithm 1 must ultimately terminate for any ω < 1.

At the end of Section III-A, we noted that the planning
problem solved in step 4 of Algorithm 1 was linear in the
dimensionality of the underlying space. Theorem 2 asserts
that the algorithm is correct with as few as two samples. As
a result, we know that the linear constant can be as small as
two.

V. EXPERIMENTS

From a practical perspective, the preceding analysis is
useful because it tells us that if we execute the while loop in
Algorithm 1 a sufficient number of times, we can expect to
localize the state of the system with arbitrary accuracy (we
can drive Θ(b,r,xg) arbitrarily low). However, for this result
to hold, we require the planner to find low cost paths each
time it is called and for the tracking Bayes filter to be an
exact realization of Equation 1 (the premise of Theorem 2).
Since these conditions are difficult to meet in practice, an
important question is how well the approach works for
approximately accurate Bayes filter implementations and for
planners that only succeed some of the time. Furthermore,
we are interested in knowing how the performance of the
algorithm changes with the number of samples used to

parametrized the planner. Figure 1(a) illustrates the exper-
imental scenario. A two-link robot arm moves a hand in the
plane. A single range-finding laser is mounted at the center
of the hand. The laser measures the range from the end-
effector to whatever object it “sees”. The hand and laser are
constrained to remain horizontal. The position of the hand is
assumed to be measured perfectly. There are two boxes of
known size but unknown position to the left of the robot (four
dimensions of unobserved state). The boxes are constrained
to be aligned with the coordinate frame (they cannot rotate).
The control input to the system is the planar velocity of the
end-effector. The objective is for the robot to localize the
two boxes using its laser and move the end-effector to a
point directly in front of the right-most box (the box with
the largest x-coordinate) so that it can grasp by extending
and closing the gripper. On each time step, the algorithm
specified the real-valued two-dimensional hand velocity and
perceived the laser range measurement. If the laser missed
both boxes, a zero measurement was perceived. The (scalar)
measurements were corrupted by zero-mean Gaussian noise
with 0.31 standard deviation.

Figure 1(b) illustrates the path of the hand (a point directly
between the two jaws of the gripper) found by running our
algorithm parametrized by nine samples. The state space
was four dimensional and comprised of two box locations
ranging between [−1,1] on the x-axis and [−2,2] on the
y-axis. The hand starts in the upper right corner at (5,5)
and ends at a point directly in front of the lower right box.
The blue line shows the path and the red circles identify
the points along the path at which re-planning occurred
(there are 14 re-plan events in this example). The tracking
Bayes filter was implemented using a gridded histogram filter
comprised of 62500 bins over the four-dimensional space
(the position of each of the two boxes was denoted by a
point in a 10 × 25 grid). At the start of planning, the prior
histogram distribution was assumed to be uniform. The cost
function optimized by the DIRTRAN planner (Equation 5)
was parametrized by α = 0.01 and V = diag(0.5) (Equa-
tion 3). The planning horizon was T = 50. The algorithm
did not terminate until the histogram Bayes filter was 90%
confident that it had localized the right-most box to within
±0.3 of its true location (ω = 0.9 in step 1 of Algorithm 1).
Figure 3(a)-(d) show snapshots of the histogram distribution
at time steps 10, 100, 200, and 300. (This is actually a two-
dimensional projection of the four dimensional distribution
illustrating the distribution over the location of one box only.)
Figure 3(e)-(h) show the nine samples used to parametrize
the planning algorithm at the four snapshots. Initially, (in
Figures 3 (a) and (e), the distribution is high-entropy and the
samples are scattered through the space. As time increases,
the distribution becomes more peaked and the sample sets
become more focused. The solid black line in Figure 1(b)
shows the entropy of the histogram distribution as a function
of time step. As expected, entropy decreases significantly
over the trajectory. For comparison, the five additional blue
dotted lines in Figure 2 show entropy results from five
additional identical experiments. Note the relatively small

Figure 8: Illustration of non-Gaussian belief space planning using a nine-sample planner. The path found

by the algorithm starts in the upper right and ends at a point directly in front of the right-most box. The

red circles denote where re-planning occurred.

Integrated Task and Motion Planning in Belief Space [10]

This is the journal-length description of our integrated strategy for planning, perception, state-estimation
and action.

2 State estimation in complex spaces

Collision-Free State Estimation [18]

In state estimation, we often want the maximum likelihood estimate of the current state. For the commonly
used joint multivariate Gaussian distribution over the state space, this can be efficiently found using a Kalman
filter. However, in complex environments the state space is often highly constrained. For example, for objects
within a refrigerator, they cannot interpenetrate each other or the refrigerator walls. The multivariate
Gaussian is unconstrained over the state space and cannot incorporate these constraints. In particular, the
state estimate returned by the unconstrained distribution may itself be infeasible.

We have developed [18] an approach that solves a constrained optimization problem (find poses with
maximum probability subject to non-collision constraints) to find a good feasible state estimate. We have
tested this for estimating collision-free configurations for objects resting stably on a 2-D surface and have
demonstrated its utility in a real robot perception domain. Example of the results can be seen in Figure 9.

8

(a) Scene from above (b) Infeasible sample mean (c) Optimization solution (d) Superimposed image

Fig. 3. Scenarios where parameter sample means from pose estimates corresponded to infeasible configurations, shown in column (b). The optimization
solution estimates in column (c) are feasible, and previously violated constraints are now satisfied tightly. The superimposed images in column (d) illustrate
that large corrections are usually applied in parameters with high variance, as given in Table I. For reference, the true object configurations are shown in
column (a). Note that this view is not available to the robot; in practice, the PR2 receives angled, occluded views such as those in figure 2. Such viewpoints
make it difficult to get a joint state estimate of all objects. Instead, individual object estimates from multiple viewpoints must be combined with odometry
information to obtain a joint estimate. This process introduces additional error and uncertainty, and potentially leads to infeasible joint state estimates.

(a) Optimization solution (b) Sampled baseline estimates (c) (d)

Fig. 4. Random samples from the baseline method described in section V for two scenarios from figure 3. Column (a) is the optimization solution (solid
black), superimposed on the sample mean configuration (dashed red). Columns (b)-(d) show baseline estimates for each scenario from three independent
trials. Each estimate had the lowest objective value among the ≈ 500 random samples generated for each trial.

Figure 9: Collision-Free Estimation

Manipulation-based Active Search for Occluded Objects [19]

Object search is an integral part of daily life, and in the quest for competent mobile manipulation robots
it is an unavoidable problem. Previous approaches focus on cases where objects are in unknown rooms but
lying out in the open, which transforms object search into active visual search. However, in real life, objects
may be in the back of cupboards occluded by other objects, instead of conveniently on a table by themselves.

Extending search to occluded objects requires a more precise model and tighter integration with manip-
ulation. We have developed [19] a novel generative model for representing container (e.g. cupboard, drawer,
etc.) contents by using object co-occurrence information and spatial constraints.

To model object-object type similarity, we introduce the notion of a containers composition, a latent
distribution over object types, with a prior based on co- occurrence statistics to enforce the known type
similarities. Second, we enforce container spatial constraints by specifying a generative model for putting
objects into containers, and then using it to sample contents of unobserved container regions. This gener-
ative process results in samples of container contents and configurations, which can be used to answer our
fundamental query of object search: how likely is the target object to be found in a certain container?

9

Figure 10: Graphical representation of our probabilistic model over container contents. Object types t are

drawn independently from the composition θ. The prior on θ enforces object type similarities. During

object search, parts of a container have been observed, with object types {toj} found. Unobserved objects

with types {ti} may exist in the unobserved space; if so, they must all fit within. This spatial constraint is

represented as a factor.

We have applied our model and the resulting search strategy for a mobile manipulator modeled on a
Willow Garage PR2 robot. As shown in Figure 12, the robot is in an environment with 4 cupboards. Each
cupboard has high sides and movable objects in the front that occlude the view of the rest of the contents.
The robots goal is to locate the green cup, which in this example is in the back of cupboard N. Object type
similarities are indicated by color, with green and brown objects tending to co-occur, and similarly for red
and blue. The planning framework described in [9] is used.

Figure 11

Figure 12 shows snapshots of the search. The top row is the robots belief state: gray areas show regions
not yet viewed by the robot; colored objects show detected objects. The bottom row shows the estimate of
P (greencupinc|{toj}) for each container. From left to right:

(a) After seeing the front of each cupboard, object type similarity indicates only N and S are likely. Also,
N is more likely because it has more unobserved space.

(b) When exploring N, an unexpected red object is observed. Since red objects tend not to co-occur with
green objects, the probability in N drops, and S becomes more likely.

(c) Removing an object from S reveals that there is no more space behind the remaining object for a cup,
so the probability becomes 0. Approaches that do not reason about spatial constraints would remove
the remaining green object in S as well, since it is likely to co-occur with the target green cup.

(d) N is now the most likely container again. Removing the red object reveals the target green cup in the
back of N.

10

Figure 12

Interactive Bayesian Identification of Kinematic Mechanisms [1]

We have addressed the problem of identifying mechanisms based on data gathered while interacting with
them – the robot tries to move a handle to various target locations and observes the reached location.
Figure 13 shows Willow Garage PR2 robot manipulating an crank (described by a revolute model).

Interactive Bayesian Identification of Kinematic Mechanisms

Patrick R. Barragán and Leslie Pack Kaelbling and Tomás Lozano-Pérez

Abstract— This paper addresses the problem of identifying
mechanisms based on data gathered while interacting with
them. We present a decision-theoretic formulation of this
problem, using Bayesian filtering techniques to maintain a
distributional estimate of the mechanism type and parameters.
In order to reduce the amount of interaction required to arrive
at a confident identification, we select actions explicitly to
reduce entropy in the current estimate. We demonstrate the
approach on a domain with four primitive and two composite
mechanisms. The results show that this approach can correctly
identify complex mechanisms including mechanisms which are
difficult to model analytically. The results also show that
entropy-based action selection can significantly decrease the
number of actions required to gather the same information.

I. INTRODUCTION

Consider a household robot that can move and grasp. It
arrives in a new house and must quickly learn to interact
with a variety of kinematic mechanisms: cupboard doors
that rotate about hinges on the left or right or that slide
sideways; drawers that pull out; security latches on the front
door; faucet handles that rotate or slide along multiple axes.

We would expect the robot already to know about a general
class of such mechanisms, possibly articulated in terms of
one degree-of-freedom primitives and ways in which they
can be combined. Then, faced with a new object, we would
like it to be able to grasp and attempt to move it, possibly
receiving information from several modalities, including joint
torques and positions, tactile feedback, and visual tracking of
parts of the object. In this process, the robot should quickly
be able to discover the type of mechanism it is interacting
with, as well as its parameters, such as hinge location, radius
of rotation, etc.

In this paper, we present a decision-theoretic formulation
of this problem, using Bayesian filtering techniques to main-
tain a distributional estimate of the mechanism type and
parameters. In order to reduce the amount of interaction
required to arrive at a confident identification, we select
actions explicitly to reduce entropy in the current estimate.

If the ultimate goal of the robot is to open a cupboard door
or to cause water to come out of faucet, then this problem
is appropriately formulated as a partially-observable Markov
decision process (POMDP) [1]. Such a formulation would

This work was supported in part by the NSF under Grant No. 1117325.
Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation. We also gratefully acknowledge
support from ONR MURI grant N00014-09-1-1051, from AFOSR grant
FA2386-?10-?1-?4135 and from the Singapore Ministry of Education under
a grant to the Singapore-MIT International Design Center.

Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA
barragan@mit.edu, tlp@mit.edu, lpk@mit.edu

Fig. 1. Willow Garage PR2 robot manipulating revolute model

support optimal action exploration in service of achieving
the goal. Solution of POMDPs can be computationally very
difficult, so in this work, we focus on the goal of identifying
the mechanism and use a greedy action-selection method.

We apply this framework in a simple experimental domain
with four primitive and two composite mechanisms and
demonstrate in simulation that it can use position information
to perform effectively and that information-driven action
selection offers significant advantages. We have conducted
experiments on a PR2 robot, using active exploration and
position information to discriminate among the mechanisms.

II. RELATED WORK

There has been substantial previous work on kinematic
identification.

Katz et al. [2] showed accurate identification of kinematic
joint types (e.g. revolute, prismatic) using vision-based track-
ing of features on a mechanism as it is actuated. After track-
ing the motion of features on the object, feature clusters are
formed based on their relative motion. The relative motion
between clusters indicates the type of joint connecting the
links of the mechanism. They consider revolute and prismatic
joints between each cluster by providing models of the trans-
forms between features on separate bodies. Katz et al. [3] use
action selection methods based on relational reinforcement
learning. They show that using this action selection method
can significantly reduce the number of actions required to
correctly identify the kinematic relationships in the structure.
Their results demonstrate robust joint identification using
guided action selection.

Jain and Kemp [4] use Equilibrium Point Control (EPC) to
actuate some simple mechanisms. A new equilibrium point at
each step is calculated to keep a manipulator hook attached

Figure 13: PR2 robot manipulating an crank (described by a revolute model)

We developed a decision-theoretic formulation of this problem, using Bayesian filtering techniques to
maintain a distributional estimate of the mechanism type and parameters. In order to reduce the amount
of interaction required to arrive at a confident identification, we select actions explicitly to reduce entropy
in the current estimate.

We have demonstrated this approach on a domain with four primitive and two composite mechanisms.
Diagrams of the each of the 6 models considered are shown in Figure ??.

11

Figure 14: Mechanism models. Fixed parameters are shown in red while variables are shown in blue. The

large dot represents each mechanisms handle.

The results show that this approach can correctly identify complex mechanisms including mechanisms
which are difficult to model analytically, such as, latches. The results also show that entropy-based action
selection can significantly decrease the number of actions required to gather the same information. Figure 14
shows results for several mechanisms model type using several action selection schemes, including entropy-
based selection.

(a) Free - Random (b) Fixed - Random (c) Revolute - Random

(d) Free - Entropy (e) Fixed - Entropy (f) Revolute - Entropy

Fig. 4. Filter convergence and random vs. entropy-based action selection from Free, Fixed, and Revolute models.

(a) Prismatic - Random (b) Latch 1 - Random (c) Latch 2 - Random

(d) Prismatic - Entropy (e) Latch 1 - Entropy (f) Latch 2 - Entropy

Fig. 5. Filter convergence and random vs. entropy-based action selection from Prismatic, Latch 1, and Latch 2 models.
Figure 15: Filter convergence and random vs. entropy-based action selection from Prismatic, Latch 1, and

Latch 2 models. Each plot shows probability of mechanism types as a function of number of actions.

Not Seeing is Also Believing: Combining Object and Metric Spatial Information [20]

Spatial representations are fundamental to mobile robots operating in uncertain environments. Two frequently-
used representations are occupancy grid maps, which only model metric information, and object-based world
models, which only model object attributes. Many tasks represent space in just one of these two ways; how-
ever, because objects must be physically grounded in metric space, these two distinct layers of representation
are fundamentally linked. We have developed an approach that maintains these two sources of spatial infor-
mation separately, and combines them on demand. We illustrate the utility and necessity of combining such
information through applying our approach to a collection of motivating examples.

12

(a) Demo setup (b) Robot’s view (e) Initial: P(1 car) = 0.43 (f) Board moved: P = 0.73 (g) Free space rules out 2-car

(c) Is it 1 car? (d) Or 2 cars? (h) Arm moves inwards: P(1 car) = 0.44 (i) Arm overlaps and hence rules out 2-car case

Fig. 6. A 3-D demonstration on a PR2 robot. Plots show occupancy grids with 1m ⇥ 0.4m ⇥ 0.2m volume, containing 104 cubes of side length 2cm,
with the final (vertical) dimension projected onto the table. Colors depict occupancy type/source: Yellow = free space observation; Black = occupancy
observation; Blue = inferred occupancy from one-car train; Green = inferred occupancy from two-car train; Red = occupied by robot in its current state. In
this projection, the robot is situated at the bottom center of the plot, facing ‘upwards’; the black line observed near the bottom corresponds to the board.
(a)-(b) A toy train is on a table, but only part of the front is visible to the robot. (c)-(d) This is indicative of two possible scenarios: the train has one car
or two cars; there is in fact only one car. (e)-(g) One way to determine the answer is to move the occluding board away. This reveals free space where the
second car would have been (circled in (e)), hence ruling out the two-car case. (h)-(i) Another way is to use the robot arm. If the arm successfully sweeps
through cells without detecting collision, the cells must have originally been free and are now occupied by the arm. Sweeping through where the second
car would have been therefore eliminates the possibility of the train being there. Please see text in Sec. VI-C and the accompanying video for details.

Without moving either the board or the viewpoint, another
way to arrive at the same conclusion is to use the robot arm,
shown in Figs. 6(h) and 6(i). Here, occupancy ‘observations’
(red) are derived from the robot model – cells overlapping
the robot in its current configuration must be occupied by
the robot. In particular, as in Sec. VI-B, we can augment the
occupancy attribute to indicate that these cells are occupied
by the robot. As the robot arm sweeps through the space
where the second train car would have been, no collisions
are detected. This indicates that the space the arm swept
through is free or occupied by the robot, which by inference
similar to that from Sec. VI-B rules out the two-car case.

VII. CONCLUSIONS AND FUTURE WORK

Through several examples, we demonstrated that there are
many plausible situations in which representing space using
both object-based and metric representations is useful and
necessary. To combine object-based and metric information,
instead of filtering in the complicated joint state space,
we adopted a philosophy of filtering in separate, easily-
manageable spaces, then only computing fused estimates
on demand. The approach for combining object-level and
metric-level states was developed extensively in the paper.

The given examples have been on small, low-dimensional
domains. The prospects of directly scaling up the presented
approach are unclear. As discussed in Sec. IV-C, the com-
plexity of the generic inference calculation is O(LX + C),
where L is the number of cells objects occupy, X is the
number of (discrete) attribute settings for all objects, and
C is the number of grid cells in the world. Potential effi-
ciencies may be exploited if X is (approximately) factored
or if adaptive grids such as octrees are used. Nevertheless,
the number of objects and cells needed to represent large
spatial environments will still present challenges. Instead, our
approach is perhaps most useful for fine local estimation: in-
formation fusion is only performed for few objects/attributes
and small areas of great interest (e.g., to a given task),
in cases where information from either the object-level or
metric-level representation alone is insufficient.

More theoretical and empirical work is needed to de-
termine the ramifications of our representation when used
in large environments over long periods of time. Handling
continuous and high-dimensional state (attribute) spaces, as
well as scaling up to larger environments containing many
objects, are subjects of future work. Nevertheless, even
in its current simplistic and generic form, our approach
enables novel lines of spatial inference that could not be
accomplished using single layers of spatial representation.

REFERENCES

[1] H. Moravec and A. E. Elfes, “High resolution maps from wide angle
sonar,” in ICRA, 1985.

[2] S. Thrun, “Learning metric-topological maps for indoor mobile robot
navigation,” Artificial Intelligence, vol. 99, no. 1, pp. 21–71, 1998.

[3] K. Konolige, E. Marder-Eppstein, and B. Marthi, “Navigation in
hybrid metric-topological maps,” in ICRA, 2011.

[4] B. Kuipers, “The spatial semantic hierarchy,” Artificial Intelligence,
vol. 119, pp. 191–233, 2000.

[5] S. Ekvall, D. Kragic, and P. Jensfelt, “Object detection and mapping
for service robot tasks,” Robotica, vol. 25, no. 2, pp. 175–187, 2007.

[6] A. Pronobis and P. Jensfelt, “Large-scale semantic mapping and
reasoning with heterogeneous modalities,” in ICRA, 2012.

[7] Z. Liu and G. von Wichert, “Extracting semantic indoor maps from
occupancy grids,” RAS, 2013.

[8] A. Ranganathan and F. Dellaert, “Semantic modeling of places using
objects,” in RSS, 2007.

[9] K. M. Wurm, D. Hennes, D. Holz, R. B. Rusu, C. Stachniss,
K. Konolige, and W. Burgard, “Hierarchies of octrees for efficient
3D mapping.” in IROS, 2011.

[10] J. Mason and B. Marthi, “An object-based semantic world model for
long-term change detection and semantic querying,” in IROS, 2012.

[11] G. D. Hager and B. Wegbreit, “Scene parsing using a prior world
model,” IJRR, vol. 30, no. 12, pp. 1477–1507, 2011.

[12] J. Elfring, S. van den Dries, M. J. G. van de Molengraft, and
M. Steinbuch, “Semantic world modeling using probabilistic multiple
hypothesis anchoring,” RAS, vol. 61, no. 2, pp. 95–105, 2013.

[13] L. L. S. Wong, L. P. Kaelbling, and T. Lozano-Pérez, “Data association
for semantic world modeling from partial views,” in ISRR, 2013.

[14] A. Doucet, J. F. G. de Freitas, and N. J. Gordon, Eds., Sequential
Monte Carlo Methods in Practice. Springer, 2001.

[15] “Robust Monte Carlo localization for mobile robots,” Artificial Intel-
ligence, vol. 128, no. 12, pp. 99–141, 2001.

[16] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press,
2005.

[17] L. L. S. Wong, L. P. Kaelbling, and T. Lozano-Pérez, “Collision-free
state estimation,” in ICRA, 2012.

Figure 16: A 3-D demonstration on a PR2 robot. Plots show occupancy grids with 1m 0.4m 0.2m volume,

containing 104 cubes of side length 2cm, with the final (vertical) dimension projected onto the table. Colors

depict occupancy type/source: Yellow = free space observation; Black = occupancy observation; Blue =

inferred occupancy from one-car train; Green = inferred occupancy from two-car train; Red = occupied by

robot in its current state. In this projection, the robot is situated at the bottom center of the plot, facing

upwards; the black line observed near the bottom corresponds to the board. (a)-(b) A toy train is on a table,

but only part of the front is visible to the robot. (c)-(d) This is indicative of two possible scenarios: the train

has one car or two cars; there is in fact only one car. (e)-(g) One way to determine the answer is to move the

occluding board away. This reveals free space where the second car would have been (circled in (e)), hence

ruling out the two-car case. (h)-(i) Another way is to use the robot arm. If the arm successfully sweeps

through cells without detecting collision, the cells must have originally been free and are now occupied by

the arm. Sweeping through where the second car would have been therefore eliminates the possibility of the

train being there.

Tracking the Spin on a Ping Pong Ball with the Quaternion Bingham Filter [5]

We have developed a deterministic method for sequential estimation of 3-D rotations. The Bingham dis-
tribution is used to represent uncertainty directly on the unit quaternion hypersphere. Quaternions avoid
the degeneracies of other 3-D orientation representations, while the Bingham distribution allows tracking
of large-error (high-entropy) rotational distributions. Experimental comparison to a leading EKF-based fil-
tering approach on both synthetic signals and a ball-tracking dataset shows that the Quaternion Bingham
Filter (QBF) has lower tracking error than the EKF, particularly when the state is highly dynamic. We
present two versions of the QBF suitable for tracking the state of first- and second-order rotating dynamical
systems.

13

in our experiments to track the ping pong ball through a
bounce on the table. The process model is taken from Ander-
sson’s ball physics derivation [1], and is a complex function
of the ball’s tracked angular and translational velocities,

wf = wi +
3µ

2r
(v̂ry, −v̂rx, 0)viz(1 + ϵ),

where wi and wf are the initial and final (pre- and post-
bounce) angular velocity vectors, µ and ϵ are the coefficients
of friction and restitution, r is the ball’s radius, viz is the
ball’s initial translational z-velocity, and v̂r = vr/∥vr∥,
where vr = (viy +wixr, vix−wiyr, 0) is the relative velocity
of the surface of the ball with respect to the table.

Quaternion exponentiation / Continuous-time filters.

Quaternion exponentiation for unit quaternions is akin to
scaling in Euclidean space. If q represents a 3-D rotation
of angle θ about the axis v, then qa is a rotation of aθ about
v. This operation would be needed to handle a continuous-
time update in the second-order Bingham filter, since the
orientation needs to be rotated by some fraction of the spin
quaternion at each (time-varying) time step.

It is possible to incorporate quaternion exponentiation
in all parts of the model via a moment-matching method
for Bingham exponentiation (akin to the moment-matching
method for Bingam composition). However, an additional
Taylor-approximation is needed to approximate the second
moments of the exponentiated Bingham as a function of the
second and higher even moments of the original distribution.
(The odd moments of a Bingham are always zero due to
symmetry.)

VI. EXPERIMENTAL RESULTS

We compare the quaternion Bingham filter against an
extended Kalman filter (EKF) approach in quaternion
space [13], where process and observation noise are gen-
erated by Gaussians in R4, the measurement function nor-
malizes the quaternion state (to project it onto the unit
hypersphere), and the state estimate is renormalized after
every update. We chose the EKF both due to its popularity
and because LaViola reports in [13] that it has similar
(slightly better) accuracy to the unscented Kalman filter
(UKF) in several real tracking experiments. We adapted
two versions of the EKF (for first-order and second-order
systems) from LaViola’s EKF implementation by changing
from a continuous to a discrete time prediction update.
We also mapped QBF (Bingham) noise parameters to EKF
(Gaussian) noise parameters by empirically matching second
moments from the Bingham to the projected Gaussian—
i.e., the Gaussian after it has been projected onto the unit
hypersphere.

Synthetic Data. To test the first-order quaternion
Bingham filter, we generated several synthetic signals
by simulating a quaternion Bingham process, where the
(velocity) controls were generated so that the nominal
process state (before noise) would follow a sine wave
pattern on each angle in Euler angle space. We chose this
control pattern in order to cover a large area of 3-D rotation
space with varying rotational velocities. Two examples of

(a) slow top-spin (b) fast top-spin

(c) slow side-spin (d) fast side-spin

Fig. 5. Example image sequences from the spinning ping-pong ball
dataset. In addition to lighting variations and low image resolution, high
spin rates make this dataset extremely challenging for orientation tracking
algorithms. Also, because the cameras were facing top-down towards the
table, tracking side-spin relies on correctly estimating the orientation of the
elliptical marking in the image, and is therefore much harder than tracking
top-spin or under-spin.

synthetic signals along with quaternion Bingham filter output
are shown in figure 4. Their observation parameters were
Λo = (−50, −50, −50), which gives moderate, isotropic
observation noise, and Λo = (−10, −10, −1), which yields
moderately high noise in the first two directions, and
near-uniform noise in the third direction. We estimated
the composition approximation error (KL-divergence) for
9 of these signals, with both isotropic and nonisotropic
noise models, from all combinations of (Λp, Λo) in
{(−50, −50, −50), (−200,−200,−200), (−10, −10, −1)}.
The mean composition error was .0012, while the max
was .0197, which occurred when Λp and Λo were both
(−10, −10, −1).
For the EKF comparison, we wanted to give the EKF the

best chance to succeed, so we generated the data from a
projected Gaussian process, with process and observation
noise generated according to a projected Gaussian (in or-
der to match the EKF dynamics model) rather than from
Bingham distributions. We ran the first-order QBF and EKF
on 270 synthetic projected Gaussian process signals (each
with 1000 time steps) with different amounts of process and
observation noise, and found the QBF to be more accurate
than the EKF on 268/270 trials. The mean angular change in
3-D orientation between time steps were 7, 9, and 18 degrees
for process noise parameters -400, -200, and -50, respectively
(where -400 means Λp = (−400,−400 − 400), etc.).
The most extreme cases involved anisotropic observation

noise, with an average improvement over the EKF mean error
rate of 40-50%. The combination of high process noise and
low observation noise also causes trouble for the EKF. Table I
summarizes the results.

Spinning ping-pong ball dataset To test the second-
order QBF, we collected a dataset of high-speed videos of
73 spinning ping-pong balls in flight (Figure 5). On each
ball we drew a solid black ellipse over the ball’s logo to
allow the high-speed (200fps) vision system to estimate the
ball’s orientation by finding the position and orientation
of the logo2. However, an ellipse was only drawn on one
side of each ball, so the ball’s orientation could only be
estimated when the logo was visible in the image. Also, since
ellipses are symmetric, each logo detection has two possible

2Detecting the actual logo on the ball, without darkening it with a marker,
would require improvements to our camera setup.

Figure 17: Example image sequences from the ping-pong ball dataset. In addition to lighting variations

and low image resolution, high spin rates make this dataset extremely challenging for orientation tracking

algorithms. Also, because the cameras were facing top-down towards the table, tracking side-spin relies on

correctly estimating the orientation of the elliptical marking in the image, and is therefore much harder than

tracking top-spin or under-spin.

Data association for semantic world modeling from partial views [21]

This is the journal-length description of our approach to data-association for state-estimation in complex
domains.

3 Planning and control for manipulation

LQR-RRT*: Optimal Sampling-Based Motion Planning with Automatically Derived Extension

Heuristics [16]

A key insight of our work has been that planning in belief space is an instance of the general problem of
planning for underactuated systems. Essentially, we have only indirect control on the uncertainty through
the dynamics in the belief space. One popular approach to planning for underactuated systems is the RRT
(Rapidly-exploring Random Trees) algorithm. However, the RRT gives wildly unoptimal results.

The RRT* algorithm has recently been proposed as an optimal extension to the standard RRT algorithm.
However, like RRT, RRT* is difficult to apply in problems with complicated or underactuated dynamics
because it requires the design of a two domain-specific extension heuristics: a distance metric and node
extension method.

We have developed [16] a method to automatically deriving these two heuristics for RRT* by locally
linearizing the domain dynamics and applying linear quadratic regulation (LQR). The resulting algorithm,
LQR-RRT*, finds optimal plans in domains with complex or underactuated dynamics without requiring
domain-specific design choices.

Figure 17(b) shows the Light-Dark domain, a partially observable problem where the agent must move
into a goal region with high confidence. Initially, the agent is uncertain of its true position. On each time
step, the agent makes noisy state measurements (less noisy in the bright areas). Since the agent is unable to
sense state directly, it is instead necessary to plan in the space of beliefs regarding the underlying state of
the system rather than the underlying state itself. In this example, it is assumed that belief state is always
an isotropic Gaussian such that belief state is three-dimensional: two dimensions describe the mean and one
dimension describes variance.

The goal of planning is to move from an initial high-variance belief state to a low-variance belief state
where the mean of the distribution is at the goal. This objective corresponds to a situation where the agent
is highly confident that the true state is in the goal region. In order to achieve this, the agent must move

14

toward one of the lights in order to obtain a good estimate of its position before proceedings to the goal.
The domain, along with a sample solution trajectory, is depicted in Figure 17.

solutions were simulated and we observed that the goal was
reached without violating the torque constraint during all
runs. Figure 3 shows the solution cost over time for both
problem instances. We also show the average solution cost
found by RRT (which is cost-insensitive) using the same
extension heuristics and the solution cost found by dynamic
programming. These graphs show that the solution cost found
by our approach decreases rapidly over time, improving
significantly on the solution cost found by the RRT and
converging to the approximately optimal solution cost as
obtained by dynamic programming.

(a) Torque-limited Pendulum R = 1

(b) Torque-limited Pendulum R = 50

Fig. 3. Solution cost over time for LQR-RRT (blue) and LQR-RRT∗

(red) for the torque-limited simple pendulum with R = 1 (a) and R =
50 (b). Averages are over 100 runs, and error bars are standard error. An
approximately optimal solution cost, obtained by dynamic programming, is
shown in black. Average times to initial solutions for LQR-RRT and our
approach were 4.8 and 22.2 seconds, respectively.

Although pendulum is a low-dimensional domain, solving
it using RRT∗ requires good extension heuristics: our attempt
to solve it using extensions based on Euclidean distance
failed, running out of memory before a solution was found.

B. Acrobot

In the second domain, the planner must bring an acrobot
(a double inverted pendulum actuated only at the middle
joint) from its initial rest configuration to a balanced vertical
pose. The two joints are denoted q1 and q2. The state space
is four-dimensional: (q1, q2, q̇1, q̇2). Since the first joint is
completely un-actuated, the acrobot is a mechanically un-
deractuated system. The equations of motion for the acrobot
are described in detail in Murray and Hauser [10].

Figure 4 shows the solution found using our approach,
and Figure 5 shows the solution cost over time. Again,
average cost rapidly improves, starting from a cost similar to
that of RRT (with the same extension heuristic) and rapidly
improving. The Acrobot is a difficult domain for which
to design extension heuristics because it is dynamic and

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 4. A solution found after 5000 iterations of LQR-RRT∗ on the acrobot.
Earlier state configurations are shown in lighter gray. Torque is presented
as a false-colored arc where red represents higher values.

underactuated. Attempts to use standard Euclidean distance-
based heuristics ran out of memory before a solution could
be found.

Fig. 5. Acrobot solution cost over time for LQR-RRT (blue) and our
approach (red). Error bars indicated standard error over an average of 50
runs. Average times to initial solutions for LQR-RRT and our approach were
109 and 136 seconds respectively.

C. Light-Dark Domain

The Light-Dark domain (adapted from Platt et al. [11]) is
a partially observable problem where the agent must move
into a goal region with high confidence. Initially, the agent
is uncertain of its true position. On each time step, the
agent makes noisy state measurements. The covariance of
these measurements is a quadratic function of the minimum
distance to each of two light sources located at (5, 2) and
(5, −2) (see Figure 6): w(x) = min((x − b1)

2, (x − b2)
2),

where b1 and b2 are the locations of the first and second
light sources, respectively.

x

y
−1 0 1 2 3 4 5 6 7

−4

−3

−2

−1

0

1

2

3

4

Fig. 6. The Light-Dark domain, where the noise in the agent’s location
sensing depends upon the amount of light present at its location. Here the
agent moves from its start location (marked by a black circle) to its goal
(a black X), first passing through a well-lit area to reduce its localization
uncertainty (variance shown using gray circles).

Figure 18: The Light-Dark domain, where the noise in the agent’s location sensing depends upon the amount

of light present at its location. Here the agent moves from its start location (marked by a black circle) to its

goal (a black X), first passing through a well-lit area to reduce its localization uncertainty (variance shown

using gray circles).

A key concept in solving partially observable problems
is that of belief state, a probability distribution over the
underlying state of the system. Since the agent is unable
to sense state directly, it is instead necessary to plan in the
space of beliefs regarding the underlying state of the system
rather than the underlying state itself. In this example, it
is assumed that belief state is always an isotropic Gaussian
such that belief state is three-dimensional: two dimensions
describe the mean, x, and one dimension describes variance,
v. The dynamics of the belief system are derived from the
Kalman filter equations and describe how belief state is
expected to change as the system gains more information:
ṡ = (u1, u2, v̇)T , where v̇ = −v2/(v + w(x)).

The goal of planning is to move from an initial high-
variance belief state to a low-variance belief state where
the mean of the distribution is at the goal. This objective
corresponds to a situation where the agent is highly confident
that the true state is in the goal region. In order to achieve
this, the agent must move toward one of the lights in order
to obtain a good estimate of its position before proceedings
to the goal. The domain, along with a sample solution
trajectory, is depicted in Figure 6.

Fig. 7. Light-Dark solution cost over time for LQR-RRT (blue) and our
approach (red). Error bars indicated standard error over an average of 100
runs. Average times to initial solutions for LQR-RRT and our approach
were 0.2 and 2.1 seconds respectively. All algorithms were implemented in
MATLAB and tested on a Intel Core 2 Duo (2.26 GHz) computer.

Figure 7 shows the solution cost for the Light-Dark
domain over time. As in the other examples, our approach
finds a solution quickly and rapidly improves. Figure 8 shows
an example tree. Notice that it would be difficult to create
heuristics by hand that would be effective in this domain: it is
unclear how much weight should be attached to differences
in variance against differences in real-world coordinates. Our
approach avoids this question because it obtains its extension
heuristics directly from the dynamics of the problem.

V. SUMMARY AND CONCLUSION

This paper has proposed an approach to using LQR with
RRT∗ in the context of domains that have underactuated, or
complex dynamics. Although RRT∗ is guaranteed to find the
optimal solutions asymptotically, in practice its performance
is crucially dependent on the careful design of appropriate
extension heuristics. By contrast, LQR-RRT∗ solved all three
problems using the same automatically derived extension
heuristics—without the need for significant design effort.
The use of such automatically derived heuristics eliminates a

−2 0 2 4 6 8
−5

0

5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Iteration: 5000 Nodes: 1578 Radius: 16.7508 Lower Bound: 3006.4426

Fig. 8. The search tree for Light-Dark after 5000 iterations of planning.
The belief space is represented in 3-dimensions, where the mean of the
agent’s location estimate is the “floor”, and the vertical axis represents
the variance of the agent’s belief distribution; lower points represent less
location uncertainty. The algorithm builds a search tree to find a trajectory
through belief-space. The optimized solution is shown as a thick yellow
line, where the agent moves towards the goal while lowering the variance
of its location distribution (descending the vertical axis). Policies in the tree
are false-colored (green through magenta) as cost increases.

major obstacle to the application of sampling-based planners
to problems with complex or underactuated dynamics.

ACKNOWLEDGEMENTS

We would like to thank Gustavo Goretkin and Elena
Glassman for valuable technical discussions. This work was
supported in part by the NSF under Grant No. 019868, ONR
MURI grant N00014-09-1-1051, AFOSR grant AOARD-
104135, and the Singapore Ministry of Education under a
grant to the Singapore-MIT International Design Center.

REFERENCES

[1] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” International Journal of Robotics Research (to
appear), June 2011.

[2] J. T. Schwartz and M. Sharir, “On the ‘piano movers’ problem:
II. General techniques for computing topological properties of real
algebraic manifolds,” Advances in Applied Mathematics, vol. 4, pp.
298–351, 1983.

[3] S. Lavalle, Planning Algorithms. Cambridge University Press, 2006.
[4] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”

International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, May 2001.

[5] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp.
566–580, 1996.

[6] S. M. Lavalle, “From dynamic programming to RRTs: Algorithmic
design of feasible trajectories,” in Control Problems in Robotics.
Springer-Verlag, 2002.

[7] P. Cheng and S. M. Lavalle, “Reducing metric sensitivity in ran-
domized trajectory design,” in In IEEE International Conference on
Intelligent Robots and Systems, 2001, pp. 43–48.

[8] E. Glassman and R. Tedrake, “A quadratic regulator-based heuristic
for rapidly exploring state space,” in Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, May 2010.

[9] S. Karaman, M. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime
motion planning using the RRT*,” in IEEE International Conference
on Robotics and Automation, 2011.

[10] R. Murray and J. Hauser, “A case study in approximate linearization:
The acrobot example,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/ERL M91/46, 1991.

[11] R. Platt, R. Tedrake, L. Kaelbling, and T. Lozano-Perez, “Belief space
planning assuming maximum likelihood observations,” in Proceedings
of Robotics: Science and Systems, June 2010.

Figure 19: The search tree for Light-Dark after 5000 iterations of planning. The belief space is represented in

3-dimensions, where the mean of the agent’s location estimate is the “floor”, and the vertical axis represents

the variance of the agent’s belief distribution; lower points represent less location uncertainty. The algorithm

builds a search tree to find a trajectory through belief-space. The optimized solution is shown as a thick

yellow line, where the agent moves towards the goal while lowering the variance of its location distribution

(descending the vertical axis). Policies in the tree are false-colored (green through magenta) as cost increases.

A Hierarchical Approach to Manipulation with Diverse Actions [2]

Most motion planning has focused on moving without contacts (collisions). However, for mobile manipula-
tion, we face more general problems. We are given a mobile robot, a set of movable objects, and a set of
diverse, possibly non-prehensile manipulation actions, such as Push, and the goal is to find a sequence of
actions that moves each of the objects to a goal configuration. We call these Diverse Action Manipulation
(DAMA) problems [2].

Our algorithm, DARRT, the Diverse Action Rapidly Exploring Random Tree, has the structure of a
rapidly exploring random tree (RRT) with controls. However, we modify both the extension and sampling
methods to work with manipulation. In particular, we have found that we need to sample from various

15

projections into subsets of the full joint configuration space (of the robot and the objects being manipulated)
so as to avoid the danger of needing to sample from measure zero subsets of the configuration space. We
have also shown that the DAMA problem can be framed as a multi-modal planning problem and developed
a hierarchical algorithm that takes advantage of this multi-modal nature.

Figure 20: An example world with Transit, Rigid-Transfer and Push primitives.

An example world with Transit, Rigid-Transfer and Push primitives in shown in Figure 19.

(a) If the robot can only grasp the plate when it is at a single point on the edge of the table, this is a
zero-measure subset of the configurations in which the plate is on the table.

(b) An extension from the state shown in the photograph towards the sample shown with the dashed lines.
Samples specify only partial states; here the sample specifies a configuration for the plate. The sequence
of primitives shown for the wrist first transits the robot to a pushing configuration (blue), pushes the
plate towards the edge of the table (yellow), transits the robot to a grasp (blue), and finally transfers
the plate to its sampled configuration (magenta).

We have tested our algorithms in complicated manipulation domains, as shown in Figure 20.

16

Figure 21: There is a plate (cyan cylinder) on a table and the goal is to move it to somewhere else in the

environment. The robot starting state is shown in red and the final trajectory is shown color-coded by the

primitive used. The trajectory is only shown for the plate for visual clarity, but the plans were for robot and

object.

We have demonstrated that the new algorithms are effective in complex domains, and that the hierarchical
algorithm is usually much more efficient than the forward or bi-directional searches.

Object Placement as Inverse Motion Planning[8]

There has been little systematic investigation of robust manipulation primitives. Consider placing, a very
common operation in manipulation, it has many failure modes, as shown in Figure 21, and no general
methods exist for planning robust placing.

Figure 22: Placing failure modes. Failure modes for the different objects. (a) The tower could tip over.

(b)-(c) The plates got caught on the gripper and dragged during retreat.

We have been investigating how to use the environment, including the robots other hand, to constrain
the possible motions of an object during placement [8]. This problem is an instance of the inverse motion
planning problem, in which we solve for a configuration of the environment that makes desired trajectories
likely.

To calculate the probability that an object will take a particular trajectory, we model the physics of placing
as a mixture model of simple object motions. Our algorithm searches over the possible configurations of the
object and environment and uses this model to choose the configuration most likely to lead to a successful
place (Figure 22). We show that this algorithm allows the PR2 robot to execute placements that fail with
traditional placing implementations (Figure 23).

17

Figure 23: A simple algorithm for robust placing. (a) We first search over release configurations for the

configuration with the highest probability of success. (b) Given the release configuration, we evaluate the

outcomes of the failure modes. Tipping causes a rotation around the x axis while dragging causes a translation

along the y axis as shown by the red arrows. We order these by decreasing probability. (c) Given the release

configuration r found in step (a) and the order of the failure mode outcomes found in step (b), we use the

movable objects - in this case, the robots empty gripper - to block the most likely failure modes.

Figure 24: Example release configurations. (a) Passive placing results. (b) Robust placing results.

Optimal Sampling-Based Planning for Linear-Quadratic Kinodynamic Systems [6]

A key insight of our work has been that planning in belief space (the space of probability distributions
over the underlying states) is an instance of the general problem of planning for underactuated systems.
Essentially, we have only indirect control on the uncertainty through the dynamics in the belief space. One
popular approach to planning for underactuated systems is the RRT (Rapidly-exploring Random Trees)
algorithm. However, the RRT gives wildly unoptimal results.

The RRT* algorithm has recently been proposed as an optimal extension to the standard RRT algorithm.
However, like RRT, RRT* is difficult to apply in problems with complicated or underactuated dynamics
because it requires the design of a two domain-specific extension heuristics: a distance metric and node
extension method.

We have developed a new approach [6] to applying LQR to the problem of finding optimal finite-horizon
extension trajectories and costs in the context of RRT. This new algorithm converges, with probability one,
to the optimal plan for problems with affine dynamics and quadratic cost functions. We include time as an
additional dimension of the space in which the tree grows, an approach commonly used to solve problems in
time-varying environments

Because the search tree explicitly represents state-time and explores all possible trajectories in this space,
we can set contraints on the length of time of the solutions. This makes the algorithm applicable to a wider
range of problems. In particular, we show that for any linear dynamical system with a quadratic cost
function, our algorithm guarantees the probabilistic optimality of the resulting trajectory. Moreover, the
algorithm can be directly extended to non-linear systems by linearizing the dynamics at vertices in the tree.
These approximate dynamics are, in general, affine, i.e., containing a zero-order term. LQR is typically

18

applied to linear systems, so we also include an extension to LQR which can be applied to affine systems.
Experimental results (see Figure 24 and Figure 25) suggest that our algorithm obtains good results in these
settings.

Figure 25: Solution tree generated by our algorithm while solving the double integrator problem. (a) The tree

is grown in the domain. The system must move from a stationary position in the lower left to a stationary

position in the upper right. The five ellipses denote obstacles, and the tree is color-coded for cost. The thick

red line shows the current best trajectory. (b) All candidate solution trajectories found during 100 separate

runs of the algorithm, again color coded for cost.

Figure 26: Our algorithm applied to the inverted pendulum. (a) through (c) illustrate a phase plot of the

RRT tree after 500, 1000, and 1500 iterations, respectively. The red line in each plot shows the lowest cost

solution in the tree (after 500 iterations, no solution has been found). Paths are colored according to cost

(from dark blue to light cyan). (d) shows performance averaged over 50 runs (average in blue; standard error

bars in green.)

FFRob: An efficient heuristic for task and motion planning [3]

We considered manipulation problems involving many objects. These problem present substantial challenges
for motion planning algorithms due to the high dimensionality and multi-modality of the search space.
Symbolic task planners can efficiently construct plans involving many entities but cannot incorporate the
constraints from geometry and kinematics.

We have show how to extend the heuristic ideas from one of the most successful symbolic planners in
recent years, the FastForward (FF) planner, to motion planning, and to compute it efficiently. We use a
multi-query roadmap structure that can be conditionalized to model different placements of movable objects.
The resulting tightly integrated planner is simple and performs efficiently in a collection of tasks involving
manipulation of many objects.

We tested our algorithm on 6 different tasks, in which the goals were conjunctions of In(Oi, Rj) for some
subset of the objects (the ones not colored red). Other objects were moved as necessary to achieve these
goals. The last three tasks are shown in Figure 26; the first three are tasks are simpler variations on task 3
(Figure 26(a)).

19

(a) Median 18 actions

(b) Median 20 actions

(c) Median 32 actions

Fig. 1: The initial and final state in three of the tasks (3,4,5) in the experiments.Figure 27: The initial and final state in three of the tasks in the experiments.

20

A constraint-based method for solving sequential manipulation planning problems [15]

We have developed a strategy for integrated task and motion planning based on performing a symbolic
search for a sequence of high-level operations, such as pick, move and place, while postponing geometric
decisions. Partial plans (skeletons) in this search thus pose a geometric constraint-satisfaction problem
(CSP), involving sequences of placements and paths for the robot, and grasps and locations of objects. We
develop a formulation for these problems in a discretized configuration space for the robot. The resulting
problems can be solved using existing methods for discrete CSP.

EVPEVAL(Hvar ,Kvar , oG,Gvar , O, V, T)

1 OI = getInitialObjects(O)
2 OP = getPlacedObjects(O)
3 ⌧ = T (OI , oG)
4 n = FINDNODE(V [Hvar], V [Kvar], ⌧)
5 if n == ;
6 return False
7 while n.� 6= ;
8 if V [Gvar] 62 n.G or
9 COLLIDES(n, OP , oG, V [Gvar], V)

10 return False
11 n = n.�
12 return True

Fig. 3: Valid path constraint test.

EVPEVAL operates on a set of placed objects OP , each of
which is specified by H and G variables; thus, it does not
have fixed arity. In practice, we introduce a separate 9VP
constraint for each placed obstacle.

C. Solving the CSP

We use an “off-the-shelf” CSP solver developed by Chen
and Van Beek [23]. It uses a combination of backtracking
(with backjumping), and some combination of propagation,
ranging from forward checking to full arc-consistency. One
can choose the level of propagation per constraint; we
choose limited propagation for the 9VP constraints and full
propagation for the others.

VII. RESULTS

We tested the performance of several variations of the
proposed approach in five scenarios, using a pilot imple-
mentation in unoptimized Python. The relative performance
of the different methods is well characterized, but the timings
are incomparable to more optimized implementations of
other approaches.

A. Scenarios

The first four test scenarios correspond to finding plans for
the four skeletons discussed in section V. Figure 4 shows the
solution to a relatively difficult regrasping problem. Figure 5
shows an object placement in a more complex domain.
Results for the other two scenarios are available in the
accompanying video material.

The last scenario (shown in the accompanying video
material) corresponds to an entire execution of the task
planner, with the goal of putting an object into a target region,
which requires moving two other objects out of the way in
the process. During the course of the task-level planning, it
has to do the pre-processing once, but then calls the CSP
35 times; 34 of these calls involve plan skeletons whose
constraints are not satisfiable. This is a realistic situation,
highlighting how critical it is for an approach to be able to
fail effectively as well as to succeed. The time to execute

Fig. 4: Given a plan skeleton consisting of pick, place, pick, and
place operations all on the same object and the constraint that
the object end up in a certain region, the CSP determines grasps,
object placements, robot configurations, and paths that satisfy the
constraints.

Fig. 5: Plan to pick an object from an awkward location on one
table, and move it to the back table.

the entire search, including all 35 calls to the CSP was 192
seconds.

B. Comparing algorithms

In this section we present a quantitative comparison of
several different variations on the general approach. We
consider the following algorithms:

• BT-Sim : pure backtracking (no constraint propagation)
using simplified configuration-space in pre-processing
(not including the arm)

• CSP-Sim: constraint satisfaction using simplified
configuration-space

• CSP-Full: constraint satisfaction using complete all con-
figuration space obstacles

• CSP-RRT: constraint satisfaction, with no pre-
processing, but calling an RRT planner in the test for
the 9VP constraints

For each of these cases, we tried two values of several
complexity parameters:

• Number of obstacles in the environment: no = 5, 15
• Number of grid samples of y coordinate: ny = 64, 128
• Number of grid samples of ✓: n✓ = 5, 12
• Number of kinematic solutions: nk = 40, 120

Recall that we do not discretize the x coordinate. In our
experiments, we use object models that are unions of extru-
sions in z; that is, objects with a constant z cross-section. So,
z values are sampled at every value where the collection of

Figure 28: Plan to pick an object from an awkward location on one table, and move it to the back table.

Backward-Forward Search for Manipulation Planning [4]

We are interested in solving manipulation planning problems in high-dimensional hybrid configuration spaces.
A state of such a system is characterized by a finite set of configuration variables that may be discrete (such
as which object a robot is holding or whether the light is turned on) or continuous (such as the joint-space
configuration of a robot or the pose of an object).

Without making any assumptions about the nature of the configuration space and the transition dynam-
ics, planning in such a space is quite difficult. We have developed a problem representation that can reveal
useful underlying structure in the domain that will be exploited by our method. There are three important
kinds of leverage:

• Factoring and sparsity: by representing the state space as the product of the spaces of a set of state
variables, we are able to assert that each action of the robot affects only a small subset of the state
variables, allowing individual actions to be contemplated in state spaces that are effectively much
smaller.

• Continuous modes: there are some continuous subspaces of the whole space that have continuous
dynamics, which allows us to use classic sample-based robot motion planning techniques to move
within those subspaces.

• Heuristic estimates: by constructing relaxed versions of a planning problem, we can efficiently obtain
estimates of the cost to reach a goal state and use these estimates to make the search for a solution
much more efficient.

We have developed a new planning algorithm, HHBF, and applied it to three different manipulation
problems (shown below) to characterize its performance. Solving these problems requires stacking, regrasp-
ing, and long-horizon manipulation. The planner and PR2 robot manipulation simulations were written in
Python using OpenRAVE. In each problem, red objects represent moveable objects that have no particular
goal condition. However, they impose geometric constraints on the problem and must, in many cases, be
manipulated in order to produce a satisfying plan. For example, in problem 1, a stacked red block prevents
the green block from being clear, so the planner first plans to unstack it before moving the green block.
Problem 3 is designed to be comparable to trial 6 of the FFRob planning system [3].

21

(a) Problem 1: Moving blue block, clearing green block, and stacking purple cylinder

(b) Problem 2: Regrasping of blue and green blocks

(c) Problem 3: Sorting blue and green blocks task similar to [3]

Figure 29: The initial and final state for each problem.

Hierarchical planning for multi-contact non-prehensile manipulation [13]

We have explored a hierarchical approach to planning sequences of non-prehensile and prehensile actions.
Our planner operates hierarchically, first finding a sequence of qualitative “object contact states” that char-

22

acterize which parts of the moving object are in contact with which parts of other objects, then finding a
feasible sequence of poses for the object (figure 29), and finally finding a sequence of contact points for the
manipulators on the object (figure 30). This hierarchical structure provides significant search guidance, and
divides the problem into three search problems that are much smaller than a search in the full combined
configuration space of the object and manipulators.

Figure 30: A contact state graph with poses connected through linear interpolation. Poses connecting two

contact states are very close to each other.

To find a robot-contact plan, we discretize the object’s surface into a set of possible contact points and
define a state to contain an object pose and a set of contacts of the robot’s manipulators on the object. We
then identify states that are feasible: both accessible, meaning that the robot can reach all of the specified
contacts and stabilizable, meaning that there exists a set of contact forces between the object and the robot’s
manipulators, as well as the fixed objects, that can stabilize the object against gravity (figure 30).

Figure 31: Robot contact space for p = (0, 0, π/6). Each axis represents possible contact points along the

object’s surface accessible by hand1 and hand2. The leftmost column and the bottom row represent no-

contact for hand1 and hand2, respectively. Green cells represent feasible states with only one contact, i.e.

where the object can be balanced by only one hand. If either hand makes the object stabilizable on its own,

the other hand can place itself on any accessible surface; these states are colored in red. For example, if a

row’s leftmost cell is green, all accessible cells in the row becomes red. States that require both hands are

colored in blue. Grey cells represent invalid or inaccessible states. Since vertex A is already in contact with

ground, any state containing A is inaccessible. White cells are infeasible. A transit is a transition from a red

state to another red state in the same row or column. The example shows transits from (c1, c2) to (c1, none)

to (c1, c3), changing which manipulator is stabilizing the object.

Figure 31 illustrates the connected search spaces: within the discrete contact states in the contact-state
graph, there are individual object poses, and a path through object-contact space can be realized by a path
through object pose space. Then, for each object pose, there is a set of robot contacts, and a path through
object pose space can be realized by a path of transit and transfer motions through the combined space of

23

robot contacts and object poses.

Figure 32: The relationship between the spaces of object contacts, object poses, and robot contacts.

We have implemented a version of this planner (in simulation) for planar objects and two robot contacts,
without any further kinematic or collision constraints introduced to model the robot performing the manip-
ulation. We tested these approaches on two problems. The first, shown in figure 32, focuses on sequencing
non-prehensile manipulation steps. There is an obstacle in the middle of the table, and the goal in this
problem is to move the box to the other side of the table. Allowing only nonprehensile manipulation, the
planner is able to find a solution.

Figure 33: Key frames from a sample solution trajectory for tumbling one box over another. Red lines

indicate the force direction of the robot contact pushing the object. The “hands” simply highlight the

location of the chosen robot contacts.

Generalizing over Uncertain Dynamics for Online Trajectory Generation [11]

Given a known deterministic model of the dynamics of a system, a start and goal state, and a cost function to
be minimized, trajectory optimization methods can be used to generate a trajectory that connects the start
and goal states, respects the constraints imposed by the dynamics, and (locally) minimizes the cost subject
to those constraints. A significant limitation to the application of these methods is the computational time
required to solve the difficult non-linear program required to generate a near-optimal trajectory. In addition,
standard techniques require the transition dynamics to be known with certainty.

We are interested in solving problems online in domains that are not completely understood in advance
and that require efficient action selection. In such domains we will not know, offline, the exact dynamics of
the system we want to control. Online, we will receive information that results in a posterior distribution over
the domain dynamics. We seek to design an overall method that combines offline trajectory optimization

24

and inductive learning methods to construct an online execution system that efficiently generates actions
based on observations of the domain.

More concretely, we aim to build a trajectory generator that, for a given initial state and goal, maps the
values of the dynamics parameters to a trajectory in the observable setting, or maps from an observation to a
trajectory in the partially observable setting. We do this by training a regression function that maps both the
dynamics parameters and the current system state to an appropriate control action. The trajectories used
for off-line training are generated by using an existing trajectory optimizer that solves non-linear programs.
To minimize the number of training trajectories required, we take an active-learning approach that uses an
anomaly-detection strategy to determine which parts of the space require additional training data.

We considered two general problem settings. In the completely observable setting, we assume that at
execution time the world dynamics will be fully observed; in the manipulation domain, this would correspond
to observing the friction and COM of the object. In the partially observable setting, we assume that properties
of the domain that govern its dynamics are only partially observed; for example, observing the height and
shape of an object would allow us to make a “guess” in the form of a posterior distribution over these
parameters to the dynamics, conditioned on the online observations. In both cases, we desire the online
action-selection to run much more quickly than would be possible if it were necessary to run a traditional
trajectory optimization algorithm online.

In one domain we have considered, the task is to move a cylindrical object with a multi-fingered robot
hand from an initial position to a goal position. We find that when the system dynamics are observable,
TOIL selects appropriate pushing trajectories, but when they are only partially observable, TOIL makes
more robust choices; an example is illustrated in Figure 33.

Figure 34: Trajectories for the observable (left) and partially observable case (right). For the observable

case, the robot simply pushes the object to the goal. For the partially observable case, the robot lifts the

object to to the goal, as to minimize the risk of tipping the cylinder over.

Symbol Acquisition for Probabilistic High-Level Planning [12]

Systems that combine high-level planning with low-level control are capable of generating complex, goal-
driven behavior. But, they are hard to design because they require a difficult integration of symbolic
reasoning and low-level motor control.

Recently, we showed how to automatically construct a symbolic representation suitable for planning
in a high-dimensional, continuous domain. This work modeled the low-level domain as a semi-Markov
decision process and formalized a propositional symbol as the name given to a grounding set of low-level
states (represented compactly using a learned classifier). Their key result was that the symbols required to
determine the feasibility of a plan are directly determined by characteristics of the actions available to an

25

agent. This close relationship removes the need to hand-design symbolic representations of the world and
enables an agent to, in principle, acquire them autonomously.

However, a set-based symbol formulation cannot deal with learned sets that may not be exactly correct,
and can only determine whether or not the probability of successfully executing a plan is 1. These restrictions
are ill-suited to the real-world, where learning necessarily results in uncertainty and all plans have some
probability of failure

In our new work, we introduced a probabilistic reformulation of symbolic representations capable of
naturally dealing with uncertain representations and probabilistic plans. This is achieved by moving from
sets and logical operations to probability distributions and probabilistic operations. We use this framework
to design an agent that autonomously learns a completely symbolic representation of a computer game
domain, enabling very fast planning using an off-the-shelf probabilistic planner.

References

[1] Patrick R. Barragán, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Interactive bayesian identification
of kinematic mechanisms. In IEEE Conference on Robotics and Automation (ICRA), 2014.

[2] Jennifer Barry, Leslie Pack Kaelbling, and Tomas Lozano-Perez. A hierarchical approach to manipula-
tion with diverse actions. In IEEE Conference on Robotics and Automation (ICRA), 2013.

[3] Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. Ffrob: An efficient heuristic
for task and motion planning. In International Workshop on the Algorithmic Foundations of Robotics
(WAFR), 2014.

[4] Caelan Reed Garrett, Tomas Lozano-Perez, and Leslie Pack Kaelbling. Backwar-forward search for
manipulation planning. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
2015.

[5] Jared Glover and Leslie Pack Kaelbling. Tracking the spin on a ping pong ball with the quaternion
bingham filter. In IEEE Conference on Robotics and Automation (ICRA), 2014.

[6] G. Goretkin, A. Perez, R. Platt, and G.D. Konidaris. Optimal sampling-based planning for linear-
quadratic kinodynamic systems. In IEEE Conference on Robotics and Automation (ICRA), 2013.

[7] Dylan Hadfield-Menell, Leslie Pack Kaelbling, and Tomas Lozano-Perez. Optimization in the now: Dy-
namic peephole optimization for hierarchical planning. In IEEE Conference on Robotics and Automation
(ICRA), 2013.

[8] Anne Holladay, Jennifer Barry, Leslie Pack Kaelbling, and Tomas Lozano-Perez. Object placement as
inverse motion planning. In IEEE Conference on Robotics and Automation (ICRA), 2013.

[9] Leslie Pack Kaelbling and Tomas Lozano-Perez. Unifying perception, estimation and action for mobile
manipulation via belief space planning. In IEEE Conference on Robotics and Automation (ICRA), 2012.

[10] Leslie Pack Kaelbling and Tomas Lozano-Perez. Integrated task and motion planning in belief space.
International Journal of Robotics Research, 2013.

[11] Beomjoon Kim, Albert Kim, Hongkai Dai, Leslie Pack Kaelbling, and Tomas Lozano-Perez. Generalizing
over uncertain dynamics for online trajectory generation. In International Symposium of Robotics
Research, 2015.

[12] G.D. Konidaris, L.P. Kaelbling, and T. Lozano-Perez. Symbol acquisition for probabilistic high-level
planning. In Proceedings of the Twenty Fourth International Joint Conference on Artificial Intelligence,
2015.

[13] Gilwoo Lee, Tomas Lozano-Perez, and Leslie Pack Kaelbling. Hierarchical planning for multi-contact
non-prehensile manipulation. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
2015.

26

[14] Martin Levihn, Leslie Pack Kaelbling, Tomás Lozano-Pérez, and Mike Stilman. Foresight and reconsid-
eration in hierarchical planning and execution. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2013.

[15] Tomas Lozano-Perez and Leslie Pack Kaelbling. A constraint-based method for solving sequential
manipulation planning problems. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2014.

[16] Alejandro Perez, Robert Platt Jr., George Konidaris, Leslie Kaelbling, and Tomas Lozano-Perez. LQR-
RRT*: Optimal sampling-based motion planning with automatically derived extension heuristics. In
IEEE Conference on Robotics and Automation (ICRA), 2012.

[17] Robert Platt, Leslie Kaelbling, Tomas Lozano-Perez, and Russ Tedrake. Non-gaussian belief space
planning: Correctness and complexity. In IEEE Conference on Robotics and Automation (ICRA), 2012.

[18] Lawson L. S. Wong, Leslie P. Kaelbling, and Tomas Lozano-Perez. Collision-free state estimation. In
IEEE Conference on Robotics and Automation (ICRA), 2012.

[19] Lawson L. S. Wong, Leslie Pack Kaelbling, and Tomas Lozano-Perez. Manipulation-based active search
for occluded objects. In IEEE Conference on Robotics and Automation (ICRA), 2013.

[20] Lawson L.S. Wong, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Not seeing is also believing:
Combining object and metric spatial information. In IEEE Conference on Robotics and Automation
(ICRA), 2014.

[21] Lawson L.S. Wong, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Data association for semantic
world modeling from partial views. International Journal of Robotics Research, 34(7), 2015.

27

	SF298
	104135_Final_Report

